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INITIAL POSTBUCKLING BEHAVIOR OF OPTIMALLY
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Abstract—The initial postbuckling behavior of optimally designed structures of two generic types is investigated.
The structures are straight, simply-supported, inextensional columns, loaded by axial thrust and flat, simply-
supported, axisymmetric circular plates, loaded by radial thrust. The structures are optimal in the sense that they
withstand the largest possible loads prior to buckling, while satisfying fixed volume and minimum allowable
gage constraints. The stability analysis is based upon Koiter’s general theory of the postbuckling behavior of
structures.

INTRODUCTION

ProvIDING additional stiffness to structures by means of reinforcements may not gain as
much strength as is indicated by the classical buckling calculation. This can happen
because the stiffening can increase the sensitivity of the structures to small geometric
imperfections [1]. This tendency can be observed for a large variety of structures. A striking
example of this type of behavior is found if one reinforces circular cylindrical shells with
either inside or outside stiffeners [2].

In this paper the initial postbuckling behavior of optimally designed structures of two
generic types is investigated. The structures are straight, simply-supported columns, loaded
by axial thrust and flat, simply-supported, axisymmetric circular plates, loaded by radial
thrust. In optimally designing these structures the classical buckling loads are maximized,
subject to the restrictions that the volume of structural material and minimum allowable
gage are specified.

Before proceeding, one important point should be noted. Masur [3] has demonstrated
that all of the structures investigated in this paper necessarily exhibit stable initial post-
buckling behavior. (This proof for columns is repeated later in this paper.} The purpose of
this paper is to determine how the initial postbuckling stiffness of the structures examined
1s effected by optimization.

The postbuckling analysis is based upon Koiter’s general theory [4] as restated by
Budiansky [5, 6]. Since the optimal design techniques and results have already been
presented by the author [7, 8] and the postbuckling analysis procedure is well accepted,
no effort is made to fill in details in the remainder of this paper.

INEXTENSIONAL COLUMNS

Buckling and initial postbuckling equations

In this section, the governing equations for the buckling and initial postbuckling of a
straight, inextensional, simply-supported, variable gage column under axial thrust are
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given. The details of the derivation are based upon the general formulation given by
Budiansky [5]. The question of the optimal design against buckling (the actual gage
variation along a column) is deferred until the next section.

The variational statement of equilibrium for an inextensional column of length L
under compressive axial load P is given by

L L
f Mék dx = f 5(dA) dx (1)
o dx

where M is the bending moment, x the curvature, A the end-shortening and the geometry
is shown in Fig. 1. The quantities M, x and (dA/dx) are defined by the relations

M = Elx 2)
_ d?y/dx? 3
= = (dy/do T )
dA ,
(a) = [ —(dy/dx)2]} — (4)

where EI is the bending stiffness.
It is convenient for our purposes to define the moment of inertia I(x) in terms of the
cross-sectional area of structural material A(x). The columns considered have

LA(x) |"
|4

I(x) = kLV[ (5)

where k and n are adjustable positive constants and V is the volume of structural material,
which is related to A(x) by

J A(x)dx = V. (6)

¢]

/{\Y

L

N

nz | T nz 2 n23
W il
-/O/E/I : - — —Tix}
///// s T b

Te«tr T 2 TaT’

TaaA

FiG. 1. Column geometry, displacements and loading.
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Along with appropriate choices of k, n = 1, 2 and 3 model, respectively, sandwich cross-
sections with fixed width and depth light cores and variable depth cover sheets, solid cross-
sections of variable size but fixed shape, and solid rectangular cross-sections of fixed width
and variable depth (see Fig. 1). The reason for including (5) and (6) will become apparent
in the section on optimization.

Combining equations (1)-{5) in non-dimensional form and anticipating that all columns
of interest are symmetrical about their mid-points, x = L/2, leads to

E
f {1+ on' + n(n')2on) — Mn+3in)on} d& = 0 N
]
where
_PL AL _dy . x . d
A=rEe Ty 1T ge fop and (=0

Note that in arriving at this expression, the binomial expansion has been used and only
terms whose order causes them to effect the initial postbuckling have been retained.

In order to investigate the buckling and initial postbuckling behavior an asymptotic
perturbation expansion of the solution valid near the bifurcation point is sought in the
form

A=Al +ac+bs®+...) (8)
n=en ket tetn o )

where A is the classical, non-dimensional buckling load of the perfect column, #, is the
classical buckling mode and ¢ is a scalar parameter whose meaning will be identified
shortly.

Substitution of (8) and (9) into (7), along with simple-support boundary conditions,
leads to the classical buckling problem

["n ) +4n, =0, ™y =0 at =0, ny =0 at ¢= % (10)

It is necessary at this point to normalize 7, . It is convenient to choose

+
f dé =1 (11)
4]

This choice fixes the value of the buckling deflection at the midpoint of the column, hence
the scalar parameter ¢ can now be identified as a measure of the contribution of the buckling
mode #, to the buckled state.

If the higher order terms in the asymptotic expansion of y are required to be orthogonal
to 1, by the relationship

+
fyhr,}.dfz() for j=23.... (12)
0
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then (7}-(9) lead to the three expressions

[§ 71 d&
l — 1
o femdd "
a=10 (14
+ .0 2 1
_ (22 [} i) dE 5[5 ui d¢ (15)
Jonide

Equation (13)has been included as it is used in the derivation of the optimization equations.
Equations{14)and (15) serve to describe the behavior of A in the initial postbuckling regime.
Since the nondimensional load 4 is an even function of the buckling amplitude ¢, a = 0
and the initial postbuckling behavior depends upon the sign and magnitude of b. It can be
seen from (8) that ifthe sign of bis negative the load carrying capacity of a column decreases
after buckling, while if b is positive it increases. In the terminology of (5], with a = 0,
b < 0 corresponds with imperfection sensitivity and b > 0 with imperfection insensitivity.

It will now be proved that b > 0 regardless of the actual shape 1(¢) of a column. If (10)
is solved for n,, and this quantity substituted into the second integral in (15), one integration
by parts, and the boundary conditions from (10) lead to

ot m(m)Z d;
= 24 fin?

Since the column gage is non-negative, 7(£) > 0 over the entire column. Also since 4, > 0
itis readily seen from the form of (16) that b > 0. Hence all of the columns to be investigated
are insensitive to initial imperfections in the sense of [5]. That is, small imperfections do not
result in a large reduction of the buckling load.

It can be seen from (16) that the magnitude of b depends upon the normalization of
the buckling mode. It is preferable to use a measure of the postbuckling stability which is
independent of the normalization. Therefore, the value of the slope H of the loading versus
end-deflection curve immediately after bifurcation is used instead of b. Comparison of
(4), (8) and (9) leads to the desired result:

-t

b
fo"l

(16)

(17)

where the fact that @ = 0 has been used. The significance of H is illustrated in the insert
in Fig. 2. [Note that the intercept of this curve is at (4/4,) = 1 because the columns have
been assumed inextensional.] It is apparent that the larger the value of H, the greater the
initial postbuckling stiffness.

Constrained optimal design equations and solution
Optimization amounts to choosing the non-dimensional cross-sectional area dis-
tribution () so as to maximize the classical buckling load 2, [as given by (13)] subject to
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FiG. 2. Buckling and initial postbuckling behavior of columns.

the restriction that the volume of structural material is specified, thus

4
f 1dé = 1. (18)

0

This expression is simply equation (6) written for one-half of the column, in terms of the
non-dimensional variables. The problem stated thus far is referred to as one of uncon-
strained optimization. For simple-support boundary conditions, solutions for n = 1, 2
and 3 are well known [9-11]. In all cases, T goes to zero and consequently the stress to
infinity at the simply-supported column ends. To prevent infinite prebuckling stresses from
occurring the constraint is imposed that the cross-sectional area of the column may
nowhere be less than some specified value 4. In non-dimensional form this is equivalent
to demanding that

1>7 (19)

where
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The remainder of the formulation of this problem is omitted, because an equivalent
problem is treated in detail in [7]. There, a constraint is placed upon the maximum allow-
able prebuckling stress instead of the minimum allowable gage. It is, however, proven
there that these two problems are identical for columns. The nature of the constrained
optimal solution is now briefly described.

A solution is sought in the region 0 < ¢ < § which maximizes the classical buckling
load 4., and satisfies both (18) and (19). It is found that two types of regions occur. In the
region 0 < & < &,, the constraint is active, thus 1 = 7 and in &, < & < 1, the constraint
is inactive, so 7 > 7. The value of the transition point, £, cannot be determined a priori,
but rather is part of the solution. It is also found that at the transition point &, 7, , and
n', are all continuous, though in general 7’ is discontinuous.

Families of optimal solutions, parameterized by 7 and n can be found analytically.
These solutions are now listed. In the constrained region, 0 < & < &;:

(n+0i, . ¥ cos[(4,/T")¥¢]

= [t | e 20
=7 1)
where £ is the value of T at ¢ = %. In the unconstrained region, &, < ¢ < §:
n+1)4, . ¥
m = [‘ . (r—r)] 22)
1 n+1\F (E =2l gy
==l1- - . 23
=l =] -

It is noted that the integral in (23) is easily performed for integer n. For specified values of
n and 7, the solution is completed by simultaneously solving the following three equations

for 4., &, and 2.
ic b2 B I 3
tan[(g) éjo] = Hn—l—l)(f—f):l (24a)

Eo = 1_[("-}-2)/2](1 —T)— {A[(n+ 1)//16-]1-.n+ 1t —7))* o
2 [(n+1)8 —(n+2)7]

1 n+ 1\t (Fol- 2 g
=1~ . 24
2 2[ ( . ) [ (240)
Values of 4., £, and % can be extracted from (24) for two limiting cases. If T = 1, then for
alln, t = 1,&, = 1and 1, = A, = 7. These values describe the solution for the prismatic

column; the one for which 7 = 1 along the entire length. If 7 = 0, then the solutions
reproduce those for unconstrained optimal design. with T = (n+2)/(n+1), &, = 0 and

(n+2) {F[(n +1)/2] }2

e D O\ T2) + 1]

Solutions for intermediate values of T can be easily found from (24) by trial and error. In
the upper half of Fig. 2 values of 4., normalized by 4,, are plotted for the allowable range
of 7 for the cases n = 1, 2 and 3.
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Initial postbuckling solution

All of the information needed to determine the initial postbuckling behavior of
minimum-gage-constrained optimal columns has already been listed. Substitution of the
solutions (20)-{24) into (16) and (17) allows H to be determined. This calculation is rather
lengthy, but simple, and leads to the result

n n+1 .
"= [(n+ i)f.“n]z[nM] {44‘0:(7:—:)

n—-2_[n+2 | t[n+)(n+4),
+Tt{m*z]+§[-——n——t—(n+6{”. (25)

Values of H for the limiting cases of T = 0 and T = 1 are easily found from (25). Recall
that when T = 1, (the prismatic column), 2 = 1| and &, =1, so H = { for all n. Also,
when % = 0, (the unconstrained optimal column) £ = (n+2)/(n+1) and &, = 0, so,
H = (n+2)/(n+4). Values of H corresponding to intermediate values of T can be easily
found from (25) knowing the gage-constrained optimal solutions. In the lower half of
Fig. 2, values of H are plotted against the same abscissa as in the upper half of the figure,
also for the cases n = 1, 2 and 3.

It is interesting to note that the optimized columns have greater initial postbuckling
stiffness than the prismatic columns. This is however of little consequence. In all cases the
initial postbuckling stiffnesses are numerically so small that they are in fact insignificant.

CIRCULAR PLATES

Prebuckling, buckling and initial postbuckling equations

The equations for the analysis of flat, simply-supported, axisymmetric circular plates,
loaded by radial thrust are now reproduced [8]. These equations are more complicated
than those for the columns just considered. This is in part a consequence of the fact that
the plates are statically indeterminate, hence the prebuckling stress field must be calculated.

The bending and stretching force equilibrium equations for the axisymmetric de-
formation of a circular plate, subject only to in-plane loading, are

d dw

5(VM,)“—M,+"N,_E;‘ =0 (26)
d
LIN)=N =0 (27)

where M,, M,, N, and N, are the radial and tangential moments and forces and W is the
out-of-plane displacement, as shown in Fig. 3. If a stress function ® is defined by

(28)
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F1G. 3. Circular plate geometry, displacements, forces and moments.
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it serves to satisfy (27) identically. The force-distortion and moment—distortion relations
for an axisymmetric plate are

1—v*| dr 20 dr
(29)
N _ ETO[U U v(dw)?
S N r 2\ dr
d*w vdw
M, = — ver
’ D(r)l: dr? + dr]
1dw 4w (30)
M= ‘D‘”[: WHTHJ

where E is Young’s modulus, v Poisson’s ratio, T the effective thickness of structural
material, U the radial displacement and D the plate bending stiffness.
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As with the column problem, it is convenient for our purposes to relate the plate bending
stiffness to the thickness of the structural material. For the class of plates under con-

sideration
2 n
D(r) = kEV[%T(—r)] (31)

where k and n are arbitrary, positive constants, R the plate radius and V the total volume
of structural material :

R
2n f T(ryrdr=V. (32)
0
With appropriate choices of k, the cases n = 1 and n = 3 model, respectively, sandwich
plates with a light core of uniform thickness and face-sheets of variable thickness, and
solid plates of variable thickness (see Fig. 3).

Equations (26) and (28)-31) can be readily combined to give the compatibility and
equilibrium relations of plate theory. These are, respectively, in non-dimensional form

1 |
[—(éd)’—Wﬁ)] +‘(V¢'—?) -n*=0 (33)
T T &
["(En' +vm)] — 1" (vn'+2)+¢n =0 (34)
where
aR2T R® 1 dw r o d
Ty Ty "Tamr e CTrR M U0

(Note that the minus sign is included in the definition of ¢ so that it is positive for com-
pressive radial stress.) The appropriate boundary conditions for a simply-supported plate,
with an applied compressive radial force/unit circumferential length, N, as shown in
Fig. 3, are

¢=0 at (=0
¢p=4 at &£=1
n=0 at &=0
T —w) =0 at =1

where A = RZN/KEV is the non-dimensional loading factor.

In reference [6] Budiansky provides a compendium of formulas for analyzing post-
buckling behavior within the context of Donnell-Mushtari—Vlasov shell theory. These
formulas are easily modified to be consistent with the present formulation. A perturbation
solution is sought near the bifurcation point in the form

{d’} - ,1{4")} +s{¢l} +£2{¢2}+ (37)
n 0 i N,

A=A l+ae+be*+...] (38)

(39)

(36)
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where it is seen that A —» 4, as ¢ — 0. Note that it is already assumed in (37) that no out-
of-plane displacement occurs prior to buckling. If (37) and (38} are substituted into (33)436),
and the resulting equations are linearized with respect to ¢, the desired set of equations
results. These equations are:

1 ' .
[ Letivo0 | +1[o5-22] —0

(39)

$o=0 ati=0, =1 ati=1

["Eny+vmy)f 1" Wﬂ*‘%)*‘&d’o’h =0
(40)

=0 at{=0 "Eni+v)=0 atl{=1
1 '
[g(éfb’z—vcﬁz)} +;(V¢z'—%) =ni

(41)

¢,=0 ati=0, ¢, =0 até&=1

It is readily concluded from the form of the governing equations that ¢, = O and , = 0,
hence these equations are not listed.

The buckling mode is normalized by fixing the vaiue of the deflection of the center of
the plate. This is done by choosing

f n, d& = L. (42)
]

This allows ¢ to be interpreted as a measure of the contribution of the buckling mode 5,
to the buckled state. Also, the higher order terms in the expansion of 4 are required to be
orthogonal to x, by the relation

1
f Gomn; A8 =0 forj=23,... (43)
0

With these definitions made, the equations needed to analyze the postbuckling behavior
of circular plates can be readily obtained from [6] in the form:

_ Lot {lm+ 0/ +(1—v*) /€)1 dE

A fodonide @4
_ féd’zﬂ% dé
b= A fSontdE (46)

Once again it is found that a = 0, hence the initial postbuckling behavior depends upon
the magnitude and sign of b. If (41) is used to eliminate n, from the numerator integral in
{(46) and one integration by parts performed, it is readily concluded from the resulting
equation that b > 0. Therefore, all the plates are insensitive to initial imperfections.

As with the column problems, the magnitude of b depends upon the normalization of
the buckling mode. Instead of using b as a measure of the initial postbuckling behavior,
it seems wise to choose the ratio K of the postbuckling to prebuckling stiffness of the
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plate, as this quantity is independent of the normalization of 5,. (Note that K for the
plate problems has a different interpretation than H for the column problems.) An ex-
pression for K can be found in [6] in the form

J.(l) don? d& ] -t
= |1 i 47
K [ T DAL Cho b — 7/ OPal}e—s @7

This relates the load to the generalized deflection through the relation

A A
o)

C

where AA is the decrease in the potential energy of the loads. (The significance of K is
shown by the insert in Fig. 4.) Since b > 0, it is expected that the range of K for the plates
is 0 < K < 1. Also, the larger the value of K, the smaller the reduction of stiffness im-
mediately after buckling.

FiG. 4. Buckling and initial postbuckling behavior of circular plates.
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Constrained optimal design equations and solution

Optimization is achieved by choosing the thickness of structural material so as to
maximize the buckling load 4, (44) while maintaining the volume of structural material
fixed. The volume restriction is given by (32), which in terms of the non-dimensional
variables assumes the form

1
[ waear =1, (49)
0

The additional restriction is imposed that the thickness of the structural material may not
fall below a specified value, T. In non-dimensional form, this requires that

t>1 (50)

where 7 = nR?T/V. It is well known that the sum of the principal stresses is constant in
regions of uniform plate thickness. Therefore, the thickness constraint could be inter-
preted as being a limitation on the maximum allowable average prebuckling stress.

Two regions of solution are identified ; ones where the constraint is active (t = 1), and
ones where it is inactive (z > 7). By analogy to the column solutions, the constraint is only
active in an annular region extending from the simply-supported edge of the plate inward
to some point which is determined during the solution by the value of 7. Comparison of
(49) and (50) leads to the conclusion that T < 1. Also, since on physical grounds thickness
cannot be negative, the allowable range of Tis 0 < 7 < 1.

Since the problem being discussed is solved in [8], no further details are included here.
It is noted that the complexity of the governing equations inspires a numerical solution.
The character of the results is identical to that for the gage constrained optimal columns.
The limiting case of T = 1 is the well-known prismatic plate, for which the classical buckling
eigenvalue is given by 1. = 4, = 4-197 when v = 0-3. In the upper half of Fig. 4, values of
the classical buckling load 4., normalized by A, are plotted for the allowable range of 7
forv=03andn = 1and 3.

Initial postbuckling solution

Once the constrained optimal plate geometries are known, the postbuckling behavior
is easily determined. The solutions to (39){41) are substituted into (46) and (47) to deter-
mine the postbuckling to prebuckling stiffness ratio K. In the lower half of Fig. 4, values
of K are shown for the allowable range of 7, for v = 0-3 and n = 1 and 3. Notice by com-
paring the upper and lower halves of Fig. 4 that as the buckling loads increase as a con-
sequence of relaxing the level of the thickness constraint, the value of K first decreases and
then increases. For both cases investigated the initial postbuckling stiffness for the uniform
thickness plate is larger than for any of the optimized plates. It is also interesting to note
that the smallest value of K in each case occurs for intermediate levels of the thickness
constraint.

CONCLUDING REMARKS

The initial postbuckling behavior of constrained, optimally designed columns and
circular plates was investigated. For the columns the slope immediately after buckling of
the load vs. end shortening curve was used as a measure of the postbuckling behavior. This
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quantity was found to increase a little along with increases in the buckling load when the
gage constraint was relaxed. The numerical values found for the slope of the load vs. end
shortening curve are however so small that the increase observed is really inconsequential.

For the plates, the ratio of the postbuckling to prebuckling stiffness was chosen as a
measure of the initial postbuckling behavior. It was found that the uniform thickness plate
exhibits a larger value of this quantity than any of the optimized plates. In addition there
was an intermediate range of values of the thickness constraint which had associated
smaller values of the initial postbuckling stiffness than were found for the unconstrained
optimal plates.
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Abcrpakt—MH ccneayeTcs HavasibHOE MOBeAEHHE ABYX OOLIMX THIOB KOHCTPYKUMil, IPOEKTHPOBAHKLIX HA
MHHUMYM Beca. ITH KOHCTPYKLMH MPEACTaBAAOT coboit nNpsmsbie, ¢BOGOAHO ONMepThIE KOJOHHBI, HATPY¢
JKEHHblE 0CeObIM JaBIEHUEM, WK TLTIOCKHE, CBOOOAHO OMEPThIE, OCECHMMETPUYECKNE KPYTJIbIE ILTACTHHKH,
HarpyeHHble paananbHbiM aaBieHuem. CMBbICT pacyeTa KOHCTPYKUHMH HAa OMTHMMYM Beca TaKOM, YTO OHH
MOTYT BbIJEPXKHMBATh HAHOONbLLYIO M3 BO3MOXKHBIX HAarpy3ok, YAOBNETBOPs 3agaHHOMY o0sbeMy M
MHHUMYMY JOMYCKaeMOM Mepbl CHJI CBSI3bl. AHaiN3 yCTOMYHBOCTH OCHOBAH HAa ob6uleil Teopun Koiltepa
MOBEAEHUsI KOHCTPYKLMIl TOC/IE BhIMYYUBAHHUS .



